Global existence in infinite lattices of nonlinear oscillators: The Discrete Klein-Gordon equation

نویسنده

  • Nikos I. Karachalios
چکیده

Pointing out the difference between the Discrete Nonlinear Schrödinger equation with the classical power law nonlinearity-for which solutions exist globally, independently of the sign and the degree of the nonlinearity, the size of the initial data and the dimension of the lattice-we prove either global existence or nonexistence in time, for the Discrete Klein-Gordon equation with the same type of nonlinearity (but of “blow-up” sign) , under suitable conditions on the initial data, and some times on the dimension of the lattice. The results, consider both the conservative and the linearly damped lattice. Similarities and differences with the continuous counterparts, are remarked. We also make a short comment, on the existence of excitation thresholds, for forced solutions of damped and parametrically driven, Klein-Gordon lattices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global nonexistence phenomena in infinite lattices of nonlinear oscillators

Pointing out the difference between the Discrete Nonlinear Schrödinger equation with the classical power law nonlinearity-for which solutions exist globally, independently of the sign and the degree of the nonlinearity, the size of the initial data and the dimension of the lattice-we prove global nonexistence in time, for the Discrete Klein-Gordon equation with the same type of nonlinearity (bu...

متن کامل

Existence and Continuous Approximation of Small Amplitude Breathers in 1d and 2d Klein–gordon Lattices

We construct small amplitude breathers in 1D and 2D Klein–Gordon infinite lattices. We also show that the breathers are well approximated by the ground state of the nonlinear Schrödinger equation. The result is obtained by exploiting the relation between the Klein Gordon lattice and the discrete Non Linear Schrödinger lattice. The proof is based on a Lyapunov-Schmidt decomposition and continuum...

متن کامل

SOLVING NONLINEAR KLEIN-GORDON EQUATION WITH A QUADRATIC NONLINEAR TERM USING HOMOTOPY ANALYSIS METHOD

In this paper, nonlinear Klein-Gordon equation with quadratic term is solved by means of an analytic technique, namely the Homotopy analysis method (HAM).Comparisons are made between the Adomian decomposition method (ADM), the exact solution and homotopy analysis method. The results reveal that the proposed method is very effective and simple.

متن کامل

Applications of He’s Variational Principle method and the Kudryashov method to nonlinear time-fractional differential equations

  In this paper, we establish exact solutions for the time-fractional Klein-Gordon equation, and the time-fractional Hirota-Satsuma coupled KdV system. The He’s semi-inverse and the Kudryashov methods are used to construct exact solutions of these equations. We apply He’s semi-inverse method to establish a variational theory for the time-fractional Klein-Gordon equation, and the time-fractiona...

متن کامل

Normal form for travelling kinks in discrete Klein–Gordon lattices

We study travelling kinks in the spatial discretizations of the nonlinear Klein–Gordon equation, which include the discrete φ lattice and the discrete sine–Gordon lattice. The differential advance-delay equation for travelling kinks is reduced to the normal form, a scalar fourth-order differential equation, near the quadruple zero eigenvalue. We show numerically non-existence of monotonic kinks...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006